

Advanced Performance Modeling with Combined Passive and Active Monitoring

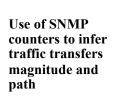
Alex Sim, Jaesik Choi, Kejia Hu, **SDM, CRD, LBNL** Constantine Dovrolis, Demetris Antoniades, **Georgia Tech**

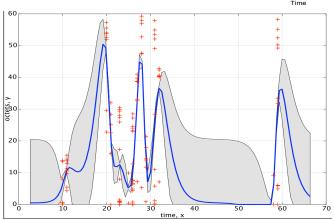
apm@hpcrd.lbl.gov

Advanced Performance Modeling

Project Goals

- Develop performance estimation models and software tools for high-bandwidth networks.
- Develop a performance prediction tool data throughput, for a given time window.





Nonparametric Bayesian models to infer a model size/complexity from the data automatically.

Current Accomplishments

- Developed overall performance inference and prediction framework for this project.
- Inference of end-to-end network traffic
 - * Enabling prediction, tracing and quantifying the network traffic with partial observations
 - * Poster at PAM'13 (this week)
 - * A paper in preparation for IMC'13
- Prediction models
 - * Seasonal changes adjustment: decomposing and quantifying the network traffic
 - * Improved accuracy of prediction by linear models and non-linear models
 - * TIP2013 talk
 - * A paper submitted to MLDM'13
 - * A paper in preparation for SC'13

Impacts

- Enable scientific collaborations to utilize the resources offered by high-bandwidth network infrastructures more effectively.
 - * Improve network usage and enable predictable data throughput
 - * Long-term capacity and traffic engineering planning of network infrastructures.

Conceptual web page images

NERSC/PDSF->BNL

En Español

7.5 Gbps throughput

Total Bandwidth 20Gbps Availability 67.5% Predictability 92%

Last Update on 19 Mar 9:18 am PDT

Current conditions at

EW0993 Oakland (E0993)

Lat: 37.86033 Lon: -122.23483 Elev: 960ft.

More Local Wx | 3 Day History | Mobile Weather

TODAY

Mostly

Available

High: 5 Gbps

TONIGHT

Busy Mostly High: 18 Gbps

WEDNESDAY

95 % Mostly

Available High: 5 Gbps

Slightly Busy

WEDNESDAY

High: 13.5 Gbps

THURSDAY

Mostly **Available** High: 4 Gbps

Mostly **Available** High: 4 Gbps

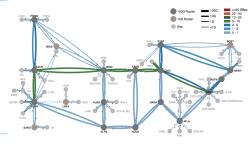
Mostly **Available** High: 3.5 Gbps

FRIDAY

Available High: 4 Gbps

SATURDAY

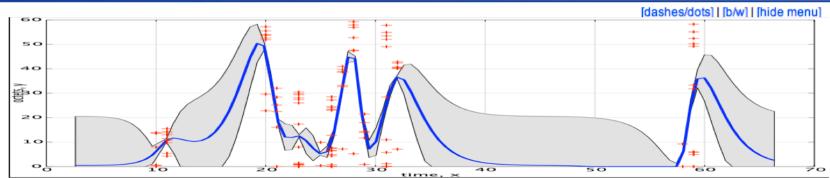
Available High: 4 Gbps



Link Forecast: NERSC/PDSF->BNL 37.86N 122.26W (Elev. 190 ft)

Last Update: 3:01 am PDT Mar 19, 2013

Hourly Weather Forecast Graph



Inference

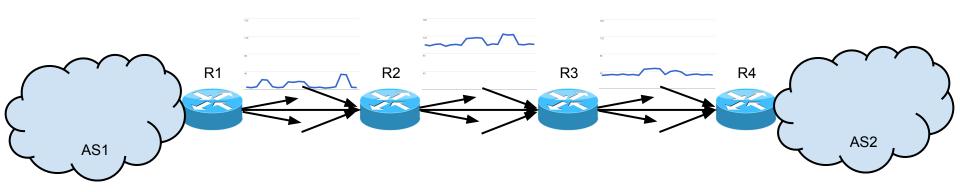
Demetris Antoniades Georgia Tech

What SNMP data can tell us about edge-to-edge network performance

- Need for historical transfer records as input to a TCP throughput prediction method
- NetFlow data
 - Limited availability
 - Extensive sampling
 - Major user privacy concerns
- Simple Network Management Protocol (SNMP)
 - Widely used to provide aggregated link usage data from network components
 - Valuable source of information for network administrators

This work

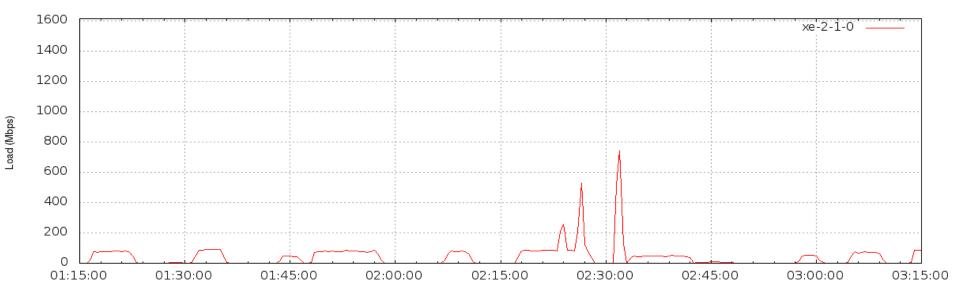
- Propose a method that uses SNMP data to:
 - Identify network transfers by observing variations in the aggregated throughput
 - Follow these transfers through the network and identify source and destination routers}

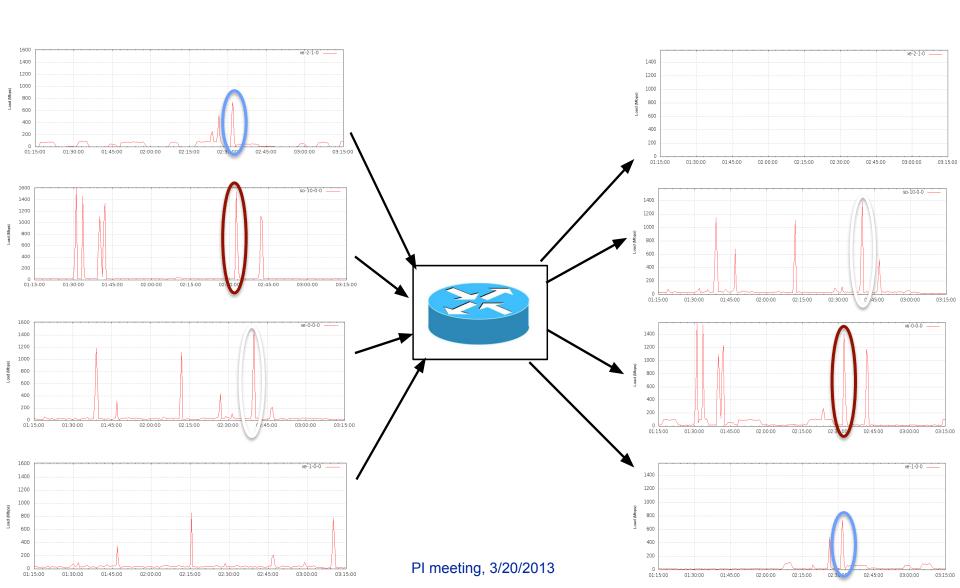


Two main observations

 Deviations in link throughput show beginning and ending of network transfers

 Transfer path can be inferred by matching deviations from an incoming link to an outgoing link of the same router





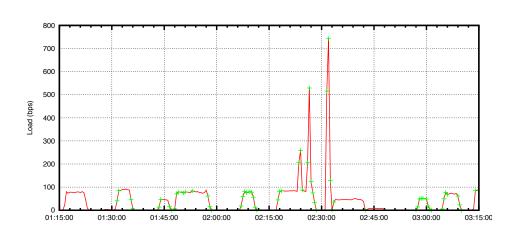
Identify transfer starting and ending points

 Deviations in link's throughput can be considered outliers from link's normal behavior

- Outlier detection method should be:
 - Robust to the link's variability
 - Robust to any periodicity in the time-series
 - Does not assume any predefined distribution over the time-series
 - Able to detect outliers online as data becomes available

MAD: Median absolute deviation from the median

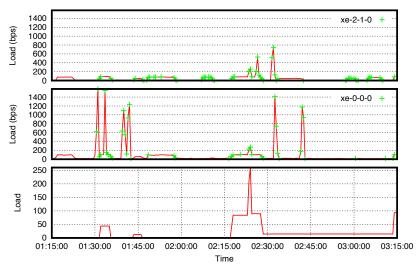
- Using a moving window V_n , n = 1...N of size N
 - Calculate absolute difference from the $median(V_N)$ for each value in V_n
 - MAD equals the median of these absolute differences
- Value V_i is an outlier if
 - V_i $median(V_N) \ge c * MAD$

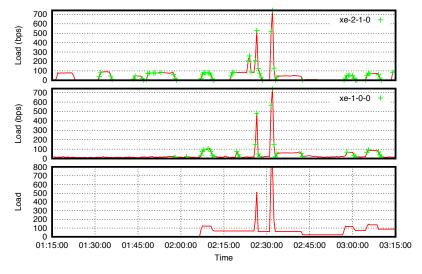


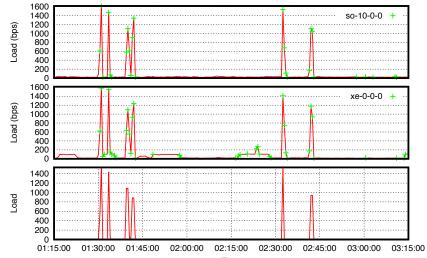
Transfer route inference

- Identify outgoing interface O for each incoming interface I outlier Outlier_I(t)
 - Find outgoing interfaces O_1 , O_2 , ..., O_k with traffic deviations $V_{O1}(t)$, $V_{O2}(t)$, ..., $V_{Ok}(t)$ \$ in range $Outlier_l(t) \pm D\%$
 - Select min(V_{O1}(t), V_{O_2}(t), ..., V_{Ok}(t)) as the outgoing interface O
- Iterate the procedure through all subsequent routers

13



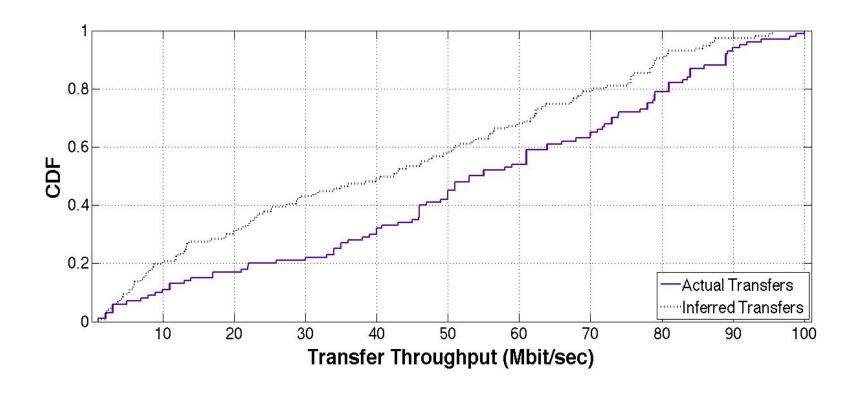




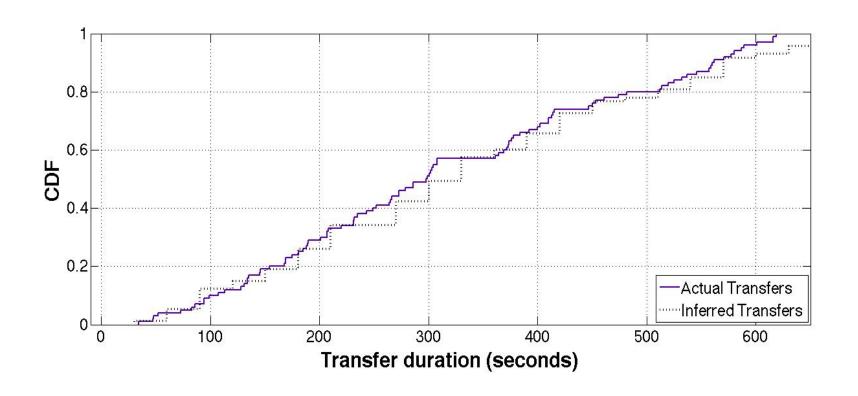
Preliminary Evaluation

- Using a number of self-generated transfers
- Examine
 - Throughput of inferred transfers
 - Duration of inferred transfers

Inferred transfer throughput



Inferred transfer duration



Ongoing/Future Work

17

- Further evaluation of our method
 - Using NetFlow data from real transfers
 - Multipath transfers: how to identify transfer splits over different outgoing interfaces
- TCP throughput prediction
 - Use inferred transfers to assist prediction
 - In the absence of in addition of NetFlow transfers

Statistical prediction models

Jaesik Choi SDM, CRD, LBNL

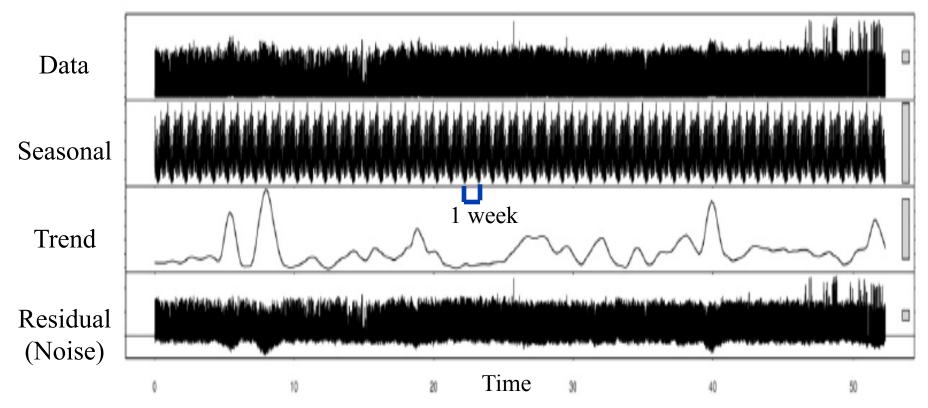
Prediction Models

- Statistical approach to the prediction models for network traffic performance based on two types of data
- SNMP → Time series model with Seasonal Adjustment
 - Analyzing network traffic patterns
 - By decomposing into seasonal, trend and random components
 - To enable prediction, tracing and quantifying the network traffic
- Netflow → Generalized Linear Mixed Model
 - Analyzing variation with the network conditions
 - By considering fixed effects, random effects and error term
 - To improve accuracy of prediction by involving both universal variance caused by randomness and variance by changes in the network traffic

Seasonal Adjustment Performance Prediction

- Data: ESnet SNMP from May 2011 to June 2012.
- STL: A Seasonal-Trend Decomposition Procedure Based on Loess*.

Data = Seasonal + Trend + Residual



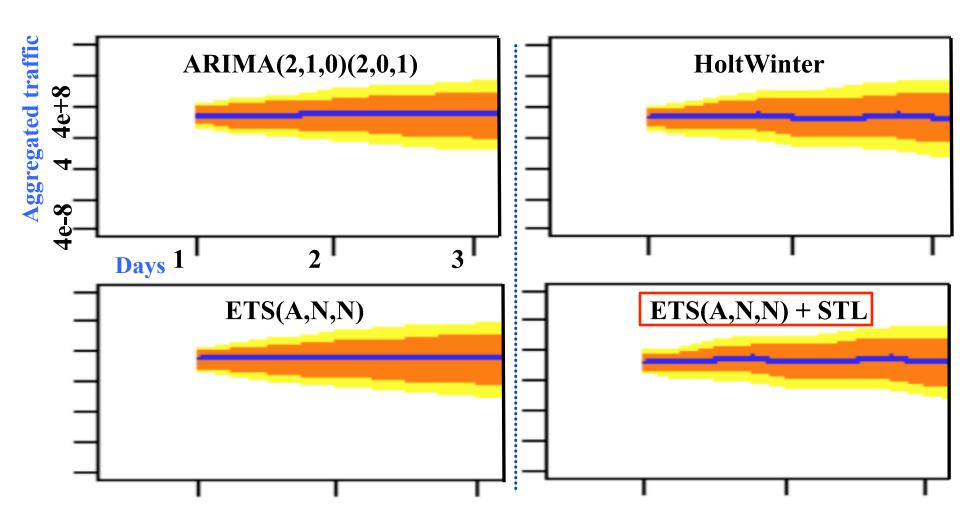
^{*}Loess: locally estimated scatterplot smoothing

Seasonal Adjustment Performance Prediction

21

Prediction (w/o seasonal trends)

Prediction (w/ seasonal trends)



ARIMA: Autoregressive integrated moving average; ETS: Exponential smoothing state space model apm@hpcrd.lbl.gov

Generalized Linear Mixed Models

GLMM: a set of predictors (linear Mixed Models)
 w/ shared coefficients and individual random effects.

$$Y = X\beta + Z\alpha + e$$

- where X, Z are known matrics
- Random effects $\alpha \sim N(0, G)$, $e \sim N(0, \Sigma)$
- α,e are uncorrelated
- Estimation using LASSO (Maximize Log-likelihood)

$$\beta_{est}(\lambda) = argmin ||y - Z\widetilde{D}\widetilde{\Gamma}\alpha - X\beta||^2 + \lambda |\beta|$$

- G=D $\Gamma\Gamma'$ D where D diagonal, Γ lower triangular matrix; \widetilde{D} , $\widetilde{\Gamma}$ is kronecker product
- Prediction (Minimized Mean Squared Prediction Error)

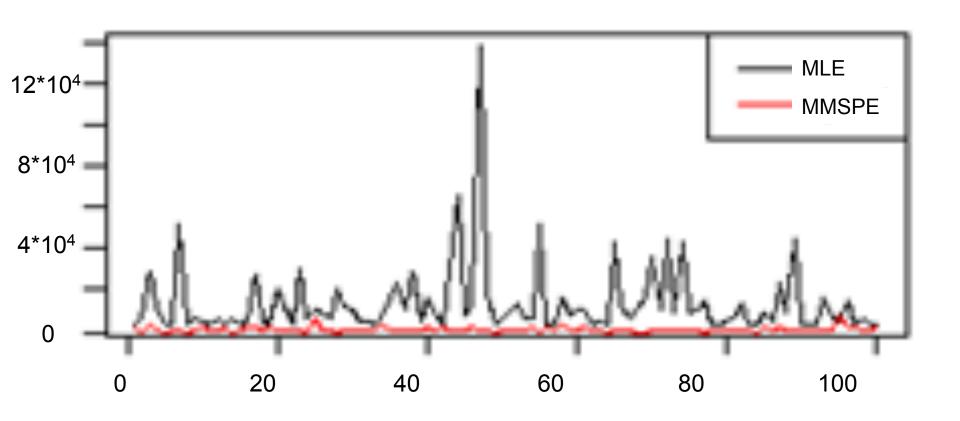
$$\beta_{est}(\lambda) = argmin ||(y - X\beta)B||^2 + \lambda |\beta|$$

• $B = GZ'V^{-1}$ and $V = \Sigma + ZGZ'$

New method

Generalized Linear Mixed Models Performance Prediction

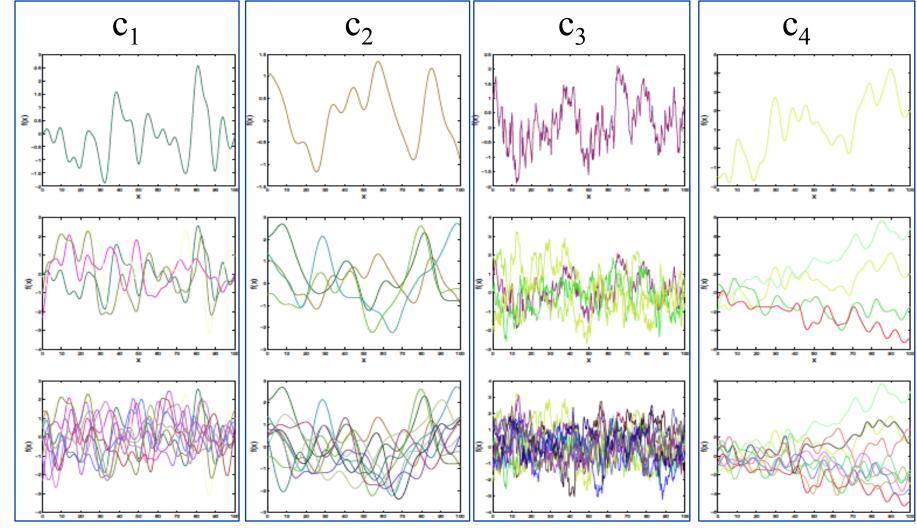
Our new method (MMSPE) is better then MLE



Nonparametric Bayesian to Estimate Network Trends

Sampling from different Gaussian processes with different c

 $f \sim GP(\cdot | 0, c)$



Nonparametric Bayesian to Estimate Network Trends

Nonparametric Bayesian

- Flexible to infer an adequate model size/complexity from the data (e.g., no predefined # of components)
- Nonlinear Regression with Gaussian Process

Model

$$y_i = f(x_i) + e_i \text{ (= function + noise)}$$

$$f \sim GP(\cdot \mid 0, c) \text{ (=function space)}$$

$$e_i \sim N(\cdot \mid 0, \sigma^2) \text{ (=noise)}$$

Prediction

$$P(y'|x',D)$$

$$= \int df P(y'|x',f,D) P(f|D)$$

D: data

x': Points of interests

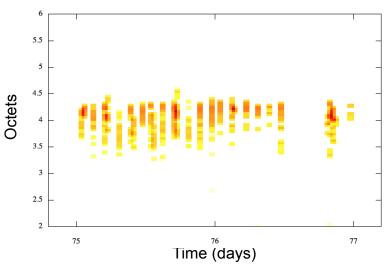
y': outputs



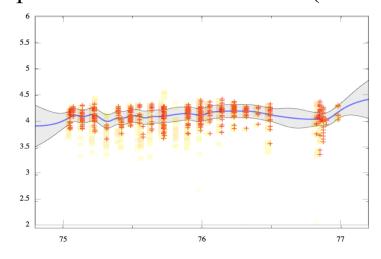
Nonparametric Bayesian to Estimate Network Trends

Predict network bandwidth with Gaussian Process

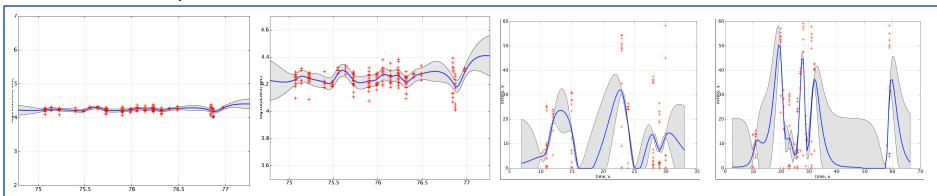
Input: Octets/sec from A to B



Output: Posterior traffic trends (functions)



Other examples



Next steps

Inference

- Further evaluation of the method on NetFlow data
- Investigate multipath transfer issue
- Integrate inferred transfers with the performance prediction

Statistical prediction models

- Further investigation on linear and non-linear models
- Study hybrid models, adaptive models

Integration with ESnet portal

Collaboration with communities

Other research issues

- E.g. how much measurement data is needed for a "good" prediction
- Questions: apm@hpcrd.lbl.gov